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The conversion of simple precursors into optically active products
is a continuing goal in chemistry to efficiently access complex
architectures for use in total synthesis and medicinal chemistry.1

An especially important substitution pattern is a carbon atom bonded
to four other carbon substituents (i.e., quaternary), and the genera-
tion of these congested centers is a significant challenge.2 The
desymmetrization of achiral molecules is a powerful strategy for
the synthesis of optically active materials and presents a distinct
method for the construction of stereogenic quaternary carbon
centers.3 In this Communication, we report the enantioselective
synthesis ofR,R-disubstituted cyclopentenes (2) by an intramo-
lecular aldol reaction of achiral tricarbonyl compounds (1) catalyzed
by chiral N-heterocyclic carbenes (eq 1).

In 2006, Nair demonstrated thatN-heterocyclic carbenes (NHCs)
catalyze the formation of cyclopentenes from unsaturated aldehydes
and chalcones.4 A premise in this elegant work is that, after the
homoenolate addition, aâ-lactone intermediate is formed which
undergoes liberation of carbon dioxide to generate the alkene
product.5,6 Recently, Bode reported a route to optically active
cyclopentenes using an NHC-catalyzed crossed benzoin/oxy-Cope
sequence.7 Our investigations of new NHC-catalyzed reactions8

have involved the use of these unique nucleophilic catalysts to
access homoenolate and enolate/enol reactivity from thesame
unsaturated aldehyde starting material.9,10 We had observed this
interesting duality in our early investigations with NHC-derived
homoenolates in which IMes11 promoted the unusual dimerization
of cinnamaldehyde to afford theâ-lactone3, as determined by X-ray
analysis (eq 2).

This finding, combined with our recently developed NHC-
catalyzed enantioselective Michael reaction,12 prompted us to
examine the possibilities of carbene-catalyzed aldol reactions. Our
objective was to couple a decarboxylation event to a symmetry
breaking operation (e.g., an aldol reaction) in order to generate
optically active alkenes.13

Our proposed reaction pathway (Scheme 1) involves initial
addition of the NHC to the aldehydes. As in our Michael reaction,
the key protonation ofI generates an enol (II ) in situ which is
poised to undergo productive bond formation. By employing a chiral
NHC catalyst with substrates such as1, an enantioselective aldol

reaction ensues to produceâ-hydroxy ketone intermediateIII .
Intramolecular acylation of this tertiary alcohol releases the NHC
catalyst, and the resultingâ-lactone (IV ) undergoes loss of CO2 to
generate2.

The combination of chiral triazolium saltA derived from
L-phenylalanine with unsaturated aldehyde1aandi-Pr2EtN as base
led to a selective reaction (-83% ee) with only moderate yield of
cyclopentene4 (Table 1, entry 1).14 Interestingly, the substitution
on the six-membered ring of the catalyst significantly impacts the
stereochemical outcome of the reaction. For example, using the
geminal dimethyl catalystB from L-phenylalanine affords-76%
ee of4 (entry 2), yet the diphenyl catalystC with the same absolute
stereochemistry asB generates4 in 51% ee (entry 3). By switching
to azolium D9c and elevating the temperature of the reaction
(40 °C) to ensure complete decarboxylation, an 80% yield of4 is
obtained in excellent enantioselectivity with 10 mol % ofD (entries

Scheme 1. Proposed Reaction Pathway

Table 1. Optimization of Conditionsa

a See Supporting Information for reaction details.b Isolated yield.
c Determined by HPLC using Chiracel AD-H column.d Careful exclusion
of oxygen.e 5 mol % of D.
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6 and 7).15 Notably, the exclusion of oxygen in the reaction increases
the overall yields (entry 4 vs 5). For entry 4, we observe the
unsaturated acid derived from1 (not shown), apparently from
oxidation of the homoenolate intermediateI . Studies to capitalize
on this observation are in progress.

Once the optimal catalyst and conditions were identified, we
investigated the scope of this desymmetrization (Table 2). Different
aryl ketones are good substrates for the reaction (entries 1-4).
Replacing the methyl group with other alkyl groups causes a slight
decrease in enantioselectivity for substituents larger than ethyl
(entries 6-8). Aliphatic diketones deliver theâ-lactone products
(12, 13) instead of alkenes. In these systems, the relative stereo-
chemistry of the methyl group and lactone in the products depends
on whether the diketone moiety is locked in a ring.

Our current model for this reaction involves the Z(O)-enol
intermediateV. A six-membered hydrogen-bonded aldol reaction
occurs which minimizes the nonbonding interactions between the
phenyl substituents on the catalyst and the phenyl ketone not
undergoing attack. The ensuing liberation of carbon dioxide from
the resultingâ-lactone affords optically active4.16

In summary, we have developed a highly selective route toR,R-
disubstituted cyclopentenes catalyzed byN-heterocyclic carbenes.

This new process combines an enantioselective aldol reaction with
a decarboxylation of aâ-lactone intermediate to afford function-
alized carbocycles containing a quaternary carbon stereocenter. The
use of chiral triazolium salts generates chiral nucleophilic enols
capable of promoting a desymmetrization event. The investigation
and applications of nucleophiles generated in situ from the
combination of unsaturated aldehydes and NHCs are ongoing.
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Table 2. Substrate Scope

a Determined by HPLC Chiracel AD-H.b 20 mol % ofD. c Diastereo-
meric ratio) 20:1. Relative stereochemistry of12 and13 determined by
NOE and X-ray crystallography, respectively. See Supporting Information
for details.
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